RI

Conversion program

RI

COLLABORATORS
TITLE :
RI
ACTION NAME DATE SIGNATURE
WRITTEN BY Conversion program October 9, 2022

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

RI

Contents

1.1 Overview of RLIEval Lib V2.5 e e e e

1.2 RIEval Lib V2.5
1.3 RIEval Lib V2.5
1.4 RIEval Lib V2.5
1.5 RIEvalLib V2.5
1.6 RIEval Lib V2.5
1.7 RIEval Lib V2.5

1.8 Example Programs

RI

Chapter 1

RI

1.1 Overview of Rl Eval Lib V2.5

Overview

This library allows evaluation of complex expression strings, allowing the
programmer to provide expression handling within their programs. Thus
calculators (like this librarys’ demo program) can be written with ease and
without having to know about how to actually evaluate an expression. This
library only works with integer values, you cannot use it to evaluate
floating point wvalues.

This library supports the following operators:

$ — The following number is hexadecimal
% — The following number is binary

+ - Add two operands

- — Subtract two operands

* — Multiple two operands

/ — Divide two operands

= - Test for equality between operands
< - Test for less than

> — Test for greater than

~ - Power operation

& — Logically AND two operands

| — Logically OR two operands

{} - The absolute decimal number inside the curly

brackets is an address to read a value from.

The value defaults to a longword in size but

can be changed by using a ’'.W’ or ’.B’ extension
on the close curly bracket.

Brackets ’ ()’ can be used to group operands together inside an expression
and to change operator precedence when performing the evaluation.
Commands List:

ConvToPostFix string$,buffer

value=PFEvaluate string$
PFRegisters address

RI

2/4

error=PFErrorType
errstr$=PFErrorText

1.2 Rl Eval Lib V2.5

Statement: ConvToPostFix
Modes : Amiga/Blitz
Syntax: ConvToPostFix string$,buffer

This command is required if you wish to do an evaluation of a string. It
converts an expression expressed in infix form to postfix. For those who
do not understand this terminology, infix is an expression like ’'2+6’,
where the operator is between the arguments - it is the normal method that
we use to express mathematical expressions. Postfix is when the operator
comes after the arguments of the expression, for example ’"2+6’ in postfix
is 72 6 +'.

The librarys evaluation routine evaluates postfix expressions only, thus
this command is provided to allow you to convert an expression to postfix.

This string parameter is the string to convert, e.g. ’"2+6’. The buffer
parameter is an area of memory to receive the converted string. It should
be at least twice as large as the string being evaluated. After calling
this command the converted string can be retrieved with a command like:

postfix$=peeks (buffer)

1.3 RI Eval Lib V2.5

Function: PFEvaluate
Modes : Amiga/Blitz
Syntax: value=PFEvaluate string$

This command evaluates a postfix string and returns the result to you as a
longword value. Note that the string passed to this command must have been
generated by the ConvToPostFix command.

If this command fails, for whatever reason, the error type can be retrieved
by calling PFErrorType and PFErrorText. IF PFErrorType returns 0, then the
evaluation occured okay and the return value from this function can be
used, otherwise the return value should be discarded.

Note that the following tokens can be used in an expression to evaluate
registers:

a0,al,a2,a3,ad,a5, a6

d0,d1,d2,d3,d4,d5,d6,d7

PC

When these tokens are found in the expression, they are substituted with
the value of the token. See PFRegisters for more information.

RI 3/4

1.4 RI Eval Lib V2.5

Statement: PFRegisters
Modes : Amiga/Blitz
Syntax: PFRegisters address

This command sets the address of the register structure that the library
should use when it encounters tokens that match the registers inside an
expression. The address passed to this routine should be a pointer to the
following newtype:

Newtype.PFRegisterType
d0.1([7]
a0.1[6]
pc.1l
End NewType

This command can be used to give the user of the routines a list of tokens
that can be assigned values by the calling program.

1.5 RI Eval Lib V2.5

Function: PFErrorType
Modes : Amiga/Blitz
Syntax: error=PFErrorType

After calling PFEvaluate this routine should be called to make sure the
evaluation was performed without any errors. If an error occured, this
routine will return a non-zero value indicating the error that occured.

If a non-zero value is returned PFErrorText can be called to return a text
string describing the error (e.g. ’'Divide by zero error’).

Current errors are:

Error Value Description

ERR_ARG 1 Need 2 arguments for expression

ERR_REG 2 Register structure not found - call PFRegister
ERR_DIVIDEO 3 Divide by 0 error

ERR_NORESULT 4 No result value - bad evaluation string
ERR_BADINDIRECT 5 No close bracket on indirect
ERR_BADINDIRECTSIZE 6 Invalid size for indirection

1.6 RI Eval Lib V2.5

Function: PFErrorText

Modes : Amiga/Blitz
Syntax: error=PFErrorText

RI 4/4

Returns an error string for the last error (if one occurred). See
PFErrorType for a list of errors.

1.7 Rl Eval Lib V2.5

©1996 Red When Excited Ltd
Undocumented commands added by Toby Zuijdveld 02/03/1999

mailto: hotcakes@abacus.net.au

Overview
Command Index
ConvToPostFix
PFErrorText
PFErrorType
PFEvaluate
PFRegisters

PFIndirectAddr returns last <
indirect hookup

Examples
Main Document
Library Index

1.8 Example Programs

Example Programs
EXAMPLE 1 - A font sensitive commodity calculator

Load Example 1
Compile It!

	RI
	Overview of RI Eval Lib V2.5
	RI Eval Lib V2.5
	RI Eval Lib V2.5
	RI Eval Lib V2.5
	RI Eval Lib V2.5
	RI Eval Lib V2.5
	RI Eval Lib V2.5
	Example Programs

